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Separation of a Five-Component Gas Mixture by
Pressure Swing Adsorption

PEILING CEN and RALPH T. YANG*

DEPARTMENT OF CHEMICAL ENGINEERING
STATE UNIVERSITY OF NEW YORK AT BUFFALO
BUFFALO, NEW YORK 14260

Abstract

Bulk separation of a five-component mixture simulating coal gasification
products was performed by pressure swing adsorption (PSA) using activated
carbon. The PSA cycle consisted of four commercially used steps: (I) pressuriza-
tion with Hj, (II) adsorption, (III} blowdown, and (IV) evacuation. Using this
cycle, four products were obtained with a single PSA unit: H, (over 99.7% purity),
CO, CH,, and acid gas (CO, + H,S). The first three products contained less than
0.001% H,S, and the acid gas was suitable for sulfur recovery. A mathematical
model incorporating equilibrium adsorption of mixture and mass transfer
resistance (of CO,) was found capable of simulating all steps of the PSA cycle.
The model simulation results were in fair agreement with the experimental data.
A fundamental understanding of the dynamics of the cyclic process was gained
through the model.

INTRODUCTION

Pressure swing adsorption (PSA) is a gas separation process in which
the adsorbent is regenerated by rapidly reducing the partial pressure of
the adsorbed component, either by lowering the total pressure or by using
a purge gas. In the original PSA cycle, invented by Skarstrom (1), two
steps (adsorption and depressurization/purge) are carried out in two
adsorbent beds operated in tandem, enabling the processing of a
continuous feed. Since the Skarstrom cycle, many more sophisticated
PSA processes have been developed and commercialized. It has recently
attracted increasing interest because of its low energy requirements as
well as low capital investment costs (2). State-of-the-art reviews of the
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PSA processes have been made by Keller (3) and Cassidy and Holmes (4).
In modern PSA processes, three or more beds are used to synchronize
and accommodate steps additional to those in the Skarstrom cycle:
cocurrent depressurization and pressure equalization. Vacuum desorp-
tion has been used in some PSA processes where an ultraclean bed is
required. Tt also has been used for the purpose of desorbing a strong
adsorbate (5). The two major commercial applications of PSA have been
air drying and hydrogen purification. Most of the commerical processes
are, however, for purification purposes rather than bulk separation, i.e.,
for mixtures containing high concentrations of adsorbates (more than
10% by weight according to Keller) (3).

Despite the increasing industrial use of PSA, theoretical understanding
of the process is still in a primitive stage. Brief reviews of the theoretical
developments have been recently made (6). Most of the published models
are equilibrium models involving single adsorbate (7-10) or two or more
adsorbates (//-13). The other models take into account the mass transfer
resistance and require increased amounts of computation (I4, 15). In
bulk separation of multicomponent mixtures, pore-diffusion (/6), equi-
librium, and linear-driving-force models (13) have been developed in this
laboratory which have been successfully used to simulate experimental
data for binary and ternary mixtures.

As pointed out by Keller (3), there is an increasing need for developing
PSA processes for bulk separation of multicomponent mixtures. The goal
of this study was to establish the feasibility of using PSA for separating
coal gasification products. One of the applications in coal gasification
remains in the production of hydrogen, where the separation of hydrogen
represents a major area for improvement. This paper presents PSA
separation results of a simulated coal gasification product. It is shown
that a single PSA unit is capable of both hydrogen separation and acid
gas removal. The effects of adsorption pressure, feed rate, and end
pressure of cocurrent desorption on the PSA separation have been
determined. A mathematical model using the linear-driving-force ap-
proximation has been developed to simulate the PSA process. The model
simulation results are in fair agreement with the experimental data.

EXPERIMENTAL

A single-column appartus (Fig. 1) was used which was capable of
simulating all steps in a multicolumn PSA process. The gas mixture
(premixed, supplied by Matheson) contained 1% (by volume) H,S and
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FIG. 1. Schematic diagram of apparatus for pressure swing adsorption. SP, sampling port;

PG, pressure gauge; CV, check valve; PT, pressure transducer; SV, solenoid valve; TC,

thermocouple; LPR, line pressure regulator. Not shown are the line connecting the upper
end of adsorber to the pump, and the flowmeter downstream of the pump.

Vacuum

24.75% each of H,, CH,, CO, and CO,. A commerical activated carbon
(PCB carbon from Calgon in Pittsburgh) was used as the sorbent. The
characteristics of the sorbent and the packed column are shown in Table
1.

The PSA cycle consisted of four steps:

Step I.  H, pressurization (0.5 min)

Step II: High-pressure adsorption (6.5 min)

Step III: Cocurrent blowdown or desorption (9.5 min)
Step IV: Countercurrent evacuation (3.0 min)

The total time for each cycle was 19.5 min. The apparatus was highly
automated. The only manual work involved product flow rate recording

TABLE 1
Adsorption Bed Characteristics

Bed inside radius, 2.05 cm

Bed length, 60 cm

Particle size, 0.028 ¢cm

Bulk density, 0.498 g/cm?

Particle density, 0.85 g/cm?
Interparticle void fraction, 0.43
Intraparticle void fraction, 0.61

Total void fraction, 0.78

Heat capacity of carbon, 0.25 cal/g/°C
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and sample collection and analysis. Pressure and temperature (at three
axial locations) were continually recorded. The evacuation step was
performed by a mechanical pump (to approximately 0.1 torr). A cyclic
steady-state was reached after approximately 4 to 5 cycles, starting from a
clean bed. The bed was insulated and the ambient temperature was
20°C.

EQUILIBRIUM ADSORPTION FROM MIXTURE

Single gas isotherms and equilibrium adsorption of five-component
mixtures for the gas-solid system studied here have been measured in
this laboratory (17-19). The single gas isotherms were correlated by a
hybrid Langmuir-Freundlich isotherm:

qmiB[Pn[

qr= 1+ BP" (1)
where
gmi=a;+ b,/T
B, = exp (¢; + d/T) 2)

The values of a, b, ¢, d, and n are listed in Table 2. Also included in the
table are the experimental heats of adsorption.

Several theories are available for predicting multicomponent adsorp-
tion from single isotherms (6). However, iteration is required in their
application. The noniterative correlation, loading ratio correlation
(LRC) (20), was selected in our PSA model to reduce the amount of
computation. Furthermore, neither the theories nor the LRC can fit the

TABLE 2
Parameters for Loading Ratio Correlation (Eq. 3) and Heats of Adsorption
H
i n a b c d 1/ (kcal/mol)

H, 0.97 87.68 42392 -12.336 1219.3 0.40 2.6
CO 1.02 65.11 17992 —9442 1286.3 1.00 2.6
CH,4 1.00 -0.76 40539 —10.245 1756.0 095 50
CO, 1.00 -52.86 80000 —-10435 19780 0.80 56

H,S 1.00 29.04 62947 -9.057 17252 2.50 5.6
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high-pressure data (/7). Thus, an empirical “interaction parameter,” 7,
was used in the LRC equations:

g = gmB{(Py;/n)"
' 1 + X B/(Py/n)"

(3)

The empirical values of 1 are also listed in Table 2. With the empirical
values in Table 2, Eq. (3) was able to predict values to within 20% for all
four components except H,, as compared with Ritter’s high-pressure data
(7). The deviation for H, was substantially higher. However, this is not
important since the amount of H, adsorption was nearly negligible in the
PSA process.

MATHEMATICAL MODELS FOR PSA

Assuming no radial variations in concentration and temperature in the
column, mass balance for the bulk gas and each component yields:

ouC ocC p dq _
oz Tttty et 4)

ouC; acC,; 0q;
+g—5t R

P
0z a TV, o

=0 (5)

where C; = P/RT by assuming ideal gas behavior. Only N — 1 equations
are needed for a N-component mixture in Eq. (5).
If the resistance to mass transfer is negligible, we have:

Equilibrium Model:
dq,/0t = dg¥or (6)

The mass transfer resistance, if important, can be approximated by using
the following linear-driving-force (LDF) rates:

LDF model:

0q,/0t = ka(q¥— q)) (7)

It is further assumed that the mass transfer coefficients, ka, are
independent of temperature, pressure, and composition.
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For energy balance, it is assumed that local equilibrium is instan-
taneous between the fluid and particles. We have:

uCC,T . 9CC,T | p 3lg(C,.T ~ H)] ar
0z te ot * V., ot + P ot
+ 2T -1y =0 ®)

where the last term represents the heat exchange with the ambient, which
was not found negligible for a small column. The value of 4 was
calculated and included the insulation layer. Four steps in series were
accounted for: bed-to-wall, wall, insulation, and insulation-to-air. In
addition, the simplifying assumption was made that the bed temperature
was 40°C and that of the ambient 20°C. The heats of adsorption/
desorption and heat capacities are:

H=3xH, 9)
C,=ZyC, (10)
Cpo = Z x,C,, (11)
C,=A;+ BT + CT* + DT (12)

The parameters for Eq. (12) are listed in Table 3.

Equations (3)-(12) are solved numerically. The computation starts at
the end of Step I of the first cycle, from a clean bed. The initial conditions,
att =0, are:

yHZ = tz = 1.0

TABLE 3
Parameters for Heat Capacities
A B X 10° C X 108 D x 10°
H, 6.483 2.215 —3.289 1.826
CO 7.373 -3.07 6.662 -3.037
CH, 4.598 12.45 2.86 -2.703
CO, 4728 17.54 —23.38 4.097

H,S 7.663 0.343 5.809 —-2.81
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yi=x;=0, for CO, CH,, CO,, and H,S
P=P, T=T, q-=gq (13)
These conditions correspond to the column filled with H, at the feed

pressure, Py, and g, is the amount of H, adsorbed at P;.
The boundary conditions for the subsequent cycles are:

Step II: Atz = 0 (the feed end)
¥: = 0.2475 for H,, CO, CH,, CO,
Yus = 001

P=Pf, T=T0, u=Llf
Atz=L  P=P,

Step III: Atz =0, u=90
t=1t, P=P)

Step 1V: Atz =1L, u=0
t=t, P = P1)

Step I: Atz =0, u=0
t=1t, P=P@)

The final state in each cycle (Step II to Step I) is:
Att=At, P=P

The pressure history, P(r), is recorded and expressed in quadratic
forms. The pressure drop across the column is neglected. When P(¢) is
used as an input, the product flow rate u(z) is calculated. Conversely, u(r)
can be used as the input and P(¢) can be calculated. The use of P(¥) is,
however, much more convenient in the computation and, in addition, it
can be more accurately recorded.

The model was solved using an implicit finite difference method which
was stable and convergent. Equations (4), (5), and (8) were expressed in
implicit finite difference equations, incorporating Egs. (3) and (6) or (7).
In the computation, 25 space steps and 585 time steps were used for each
PSA cycle. Temperature and concentrations were iterated into two
separate loops. First, a set of C; and T was assumed for each space
segment. g; were calculated from Egs. (3) and (6) or (7). The value of u was
then evaluated from Eq. (4). With these values, a new set of C; was
calculated from Eq. (5), which was compared with the assumed set. The
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iteration was continued until y; were within 10~ of the assumed values.
Equation (7) was used to calculate a new T, which was iterated until it was
within 107° of the assumed 7. All computations were performed in a VAX
780 computer. The computer time was approximately 10 min for a
complete PSA cycle for a five-component mixture. Cyclic steady state was
reached in approximately four to five cycles (which agreed with
experimental results).

RESULTS AND DISCUSSION

By using the previously mentioned four-step PSA cycle, a simulated
coal gasification product containing 1% (by volume) H,S and 24.75% each
of H,, CO, CH,, and CO, was separated. It was obvious that the mixture
separation into five high-purity products by a single PSA unit was not
possible. The goals of the separation were therefore to achieve: (1) a high-
purity H,, and (2) an acid gas which was suitable for further treatment
such as sulfur recovery. The commercial sulfur recovery processes are
capable of handling feeds containing only a few percent of H,S and a
much higher concentration of CO,. Another goal for the separation was
to produce “clean” or “sulfur-free” products, i.e., H, and CO/CH, (fuel)
products. The range of operating conditions as well as the PSA cycle in
this study were designed to achieve these goals.

Presentation and Analysis of a Typical Run

Typically four to five PSA cycles were required to achieve a cyclic
steady-state from start-up of the process. In the experiments, steady-state
was reached when the histories of pressure, temperature, concentration,
and flow rate remained the same in each cycle. The experimental data of
the 9th cycle of Run S are shown in Tables 4 and 5, and in Figs. 2 and 3.
Table 4 shows the instantaneous flow rate and composition of the effluent
from the column during the steady-state cycle. During the cocurrent
blowdown step, Step 111, the composition of the effluent varied from a H.-
rich early stage and CO-rich middle stage to a CH,-rich later stage.
Therefore, three cuts were made in Step III (IIfa, IIIb, and IIl¢) to recover
the three products. The time order of the products in the effluent was in
agreement with the adsorptivities of single components. The results
showed that four products could be obtained from a single PSA unit: H,,
CO, CH,, and acid gas (CO, + H,S). The volume-averaged product
compositions and the volumes of all products are listed in Table 5. Table
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FIG. 2. Effluent concentrations in a steady-state PSA cycle for separating a 24.75/24.75/24.75/

24.75/1.00 Hy/CO/CH,/COy/H,S mixture with activated carbon (Run 5). The symbols are

H, (O). CO (O), CH, (@), CO, (A). H,S (&) for the experimental data, Equilibrium model
(dashed line). and LDF model (solid line).

5 also shows the product recovery for each component. The results
showed that the goals of separation were achieved: An H, product at over
99.99% purity and 90.40% recovery, CO at 86.30% purity and 98.74%
recovery, CH, at 55.30% purity and 83.90% recovery, and an acid gas
containing 4.52% H,S and 76.65% CQO, were obtained. The H,S content
was not detectable with the gas chromatograph (which could detect
0.001% H,S) in the H,, CO, and CH, products. The throughput was 384 L
STP/cycle, with 412 g carbon sorbent, and was in the range of commercial
PSA operations.

The feed amount per cycle, at steady-state, was calculated by material
balance:

CH, output in Steps 1 to IV

Feed/cycle = Fraction of CH, in feed

(14)
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FIG. 3. Steady-state PSA temperature histograms (for Runs 5) at 12.7 cm (A), 33.0 cm (B), and
53.3 cm (C) from the top of the bed (60 cm height) which is the feed end. Solid line, LDF
model; dashed line, experimental (Run 5).

Material balance at steady-state for all components was within a few
percent. Since the amount of H, in feed equaled that of CH,, the H,
amount in Step I was calculated as:

H, in Step I = H, output in Steps II to IV — H, in feed (15)

The product recoveries were calculated as:

H, output in IT and ITla — H, inputin I
H, in feed

H, recovery = (16)
CO(CH,) output in IIIb + IlIc

CO(CH,) recovery = — -5y output in 11 to TV

(17
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CO,(H,S) output in IV

COy(H,S) recovery = CO,(H,S) output in I to IV

(18)

Figure 3 shows the temperature histories at three locations (at the
center of the column) in the 9th cycle of Run 5. The temperature histories
at points A (upper) and B (middle) simply reflect the movement of the
wavefronts, with the peak indicating the crossing of the adsorbate
wavefront. The wavefronts of the individual components were obviously
not resolved. At the lower bed location (point C), two temperature peaks
appear during cocurrent blowdown. The first peak indicates the read-
sorption of CO, which was desorbed from the upper bed, and the second
peak refers to the readsorption of CH,. The wavefronts of CO and CH,
were clearly resolved during the blowdown step. These temperature peaks
also corresponded well to the concentration profiles/histories in the
column, as computed from model simulation.

The Equilibrium and linear-driving-force (LDF) models were both
used. The results predicted (the Equilibrium model was a predictive
model) by the Equilibrium model were in poor agreement with the
experimental data, as shown in Fig. 2 and Table 5. The major discrepancy
was in the CO, concentration. The experimental data consistently
showed an earlier breakthrough of CO, in the PSA cycle than the
Equilibrium model had predicted. This difference indicated that the
mass transfer resistance for CO, in adsorption/desorption was signifi-
cant. The CO, adsorption in Step I1 did not reach equilibrium. Thus, CO,
concentration in the voids of the upper portion of the bed was high, and
resulted in an early breakthrough during Step IIl. Therefore, the LDF
model, i.., Eq. (7), was used for CO,, but Eq. (6) continued to be used for
all other components in the LDF model. The mass transfer coefficient for
CO, was empirically determined to be 0.2 s™'. The results of the LDF
model were in fair agreement with the experimental data, as seen in Fig. 2
and Tables 4 and 5. The temperature steady-state histories predicted by
the LDF model, and compared with experimental data, are also shown in
Fig. 3. The double peaks at the lower-bed point were also predicted by the
model. As mentioned, the mass transfer coefficient for CO, was a fitting
parameter. The empirical value of 0.2 s~ was, however, not too far from
the value of 15D/r; = 0.9 57",

Figures 4 to 7 show the LDF model simulation of the concentration
profiles in the column at various times during a steady-state cycle in both
gas and adsorbed phases. These profiles help understand the steady-state
dynamics of the PSA process. Several observations are noted below.
Concentration peaks for CO and CH, in both gas and adsorbed phases
were formed in Step II, as shown in Figs. 4 and 5. The dynamics of Step
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FIG. 5. The gas-phase concentration profile along the column predicted by the LDF model.
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F1G. 6. The adsorbed-phase concentration profile along the column predicted by the LDF
model during Step IIL. (—) 1.5 min, (- -) 4.5 min, and (— -) 9.5 min from the start of Step
I1I in Run 5.
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FiG. 7. The gas-phase concentration profiles along the column predicted by the LDF model
during Step 11, at (——) 1.5 min, (- -) 4.5 min, and (— +) 9.5 min from the start of Step IIl in
Run 5.



13:22 25 January 2011

Downl oaded At:

740 CEN AND YANG

III are reflected in Figs. 6 and 7. The concentration peaks of CO and CH,
moved toward the end of the column, and became more diffuse even
though the distance between the peak locations increased. The diffuse
and overlapped peaks resulted in poor separation of the two components.
In Figs. 4-7, no clear concentration peaks were observed for CO,. This
finding was in agreement with the observation that no third temperature
peak was seen at point C in Step 111, Fig. 3. The CO, wavefront was much
more diffuse than CO and CH,, apparently due to the higher mass
transfer resistance.

The relative adsorptivity (which indicates separability and is an
opposite measure from the relative volatility used in distillation) is
defined as

Rl_'i = 41‘7%‘* (19)

where the ¢* are from single gas isotherms. The R factors at 25°C and
partial pressures in the feed mixture are Reom, = 8.2, Reyyco = 1.7, and
Reoycn, = 20. Based on the R values, the pair most difficult for
separation was CH,/CO, which agreed with the PSA results. The CH,
product purity was further lowered by the lower mass transfer rate for
CO.. As a result, the CH, product purity only reached 60%.

100 T T T
R
- cyclet, ~ 5
= 7/
i
= L-=2
= NN
-~

w N/ N
= 50} / -
S /
S I
2 1 -
- 1 SN
> ! ' /| ~
= ‘L )

ftersfl2 1 4/

b7

| Z/\ // 1
0 5 10 15 19.5
Time,min

FiG. 8. The predicted transient CO and CH, concentration histograms by the LDF model.
CO, solid line; CHy, dashed line.
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The transient behavior, from start-up to steady-state, was well predicted
by model simulation, as shown in Fig. 8. Due to the long cycle time, 19.5
min, a cyclic steady-state was reached after a small number of cycles.
Figure 8 shows the rapid approach to steady-state.

Effects of Major Operating Variables in PSA

The effects of the operating conditions on the five-component PSA
separation are indeed complex. Discussion on optimum operating
conditions will not be meaningful until specific requirements are given
for the separation. The effects of major operating conditions on the
separation by the four-step PSA cycle were studied. The parameters
studied were: adsorption (or feed) pressure, feed/cycle (or throughput),
and the end pressure of Step III (blowdown). The experimental data and
the LDF model simulation results are shown in Tables 5-7. The pressure
histories of all runs are shown in Fig. 9.

Effects of End Pressure of Blowdown on Separation
The end pressure of Step III in the typical run, Run 5, was 1.1 atm. A

lower end pressure would accomplish the following: (1) a higher CH,
product recovery, and (2) a low pressure during the evacuation step, Step

40 r r . 4
__Lun_l_@_____*
30, .\\ ! 413
!
g || ’
< 20 \ . Jz
‘;‘ It
s |l
n-10' 41
! ~
~
iy
| :
0 5 10 15 19.5

Time, min

F1G. 9. The experimental pressure histories for feed pressure of 21.4 atm (solid line) and 35.0
atm (dashed line).
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IV, which in turn yields a higher product purity for H,S. The end pressure
of Step I11 was decreased by switching the effluent line to the mechanical
pump line in the last % min of Step III. The end pressure of Step III in
Run 6, with all other parameters nearly the same as in Run §, was 0.8 atm.
(The bottom plate of the column was a sintered steel plate which
prevented a rapid lowering of pressure.) The results of Run 6, shown in
Fig. 5, indicated that both H,S product purity (increased from 4.52 to
6.30%) and CH, recovery (increased from 83.90 to 93.97%) were sub-
stantially increased. Table 6 shows a similar comparison of two runs at a
higher adsorption (feed) pressure, 35 atm. The increase in H,S product
purity was significant because the costs for sulfur recovery in commercial
processes are critically dependent on the H,S feed concentration. The
results showed clear benefits for a lower end pressure of Step III. The
effects of the end pressure in Step III were clearly predicted by model
simulation results as shown in Table 5 and 6.

Effects of Feed Rate

Since the time cycle was fixed, the feed rate was determined by the
amount of feed per cycle. Runs 4, 5, and 9 were designed to determine the
effects of feed rate as shown in Tables 5 and 7. The feed amount was in
the following order: Run 4 > Run 5 > Run 9, keeping all other conditions
nearly the same.

The effects of feed rate on separation were more exactly called the
effects of bed utilization or coverage by adsorbates in the adsorption step,
Step II. A cross examination of Tables 5 and 7 on Runs 4, 5, and 9 showed
the separation of the first four components (H,, CO, CH,, and CO,) was
better at a lower feed rate. The H,S product purity was, however, higher at
a higher feed amount. The feed amounts were 31.8, 38.2, and 484 L STP/
cycle, respectively, for Runs 4, 5, and 9.

Except for the least adsorbable component, H,, there existed an
optimal feed rate for each component; the optimal values were not the
same for all components. They could, however, be predicted by model
simulation. For the H,S component, the optimal feed was apparently
near 38.2 L STP/cycle, Run 5. For CO, the results of Run 9 (lowest feed)
were much better than Run 4, but nearly the same as Run 5. For the H,
product, results of Runs 5 and 9 were similar, but much better than Run 4,
where the bed was nearly fully covered by the adsorbates during the
adsorption step.

The fraction of the bed not covered by adsorbates in Step II was very
important in producing high-purity products of the strongly adsorbed
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components. A fundamental reason has been given (I3, 16) by a total bed
loading analysis. During Step III the clean bed performs the important
function of readsorbing the desorbed components, and eluting H, out of
the bed.

Effects of Feed Pressure

The effects of feed pressure should be more meaningfully discussed by
the effects of bed utilization (in Step II). Nonetheless, results of two runs,
Runs 2 and 4, may be compared from Tables 6 and 7. The total feed
amounts per cycle were nearly equal, as with other conditions. The
separation was better with a higher feed pressure, Run 2, except for the
H,S products which were similar. However, as noted, the bed was nearly
fully covered by adsorbates in Step II in Run 4, whereas some clean bed
was available in the column for readsorption in Step III in Run 2. The
better separation in Run 2 was apparently attributable to the portion of
clean bed. In general, the feed rate is dependent on the optimal bed
coverage in Step II.

Effects of all operating variables discussed in the preceding were
adequately predicted by the model simulation. However, the agreement
between experimental data and model simulation was not entirely
satisfactory. One of the reasons for disagreement involved the n values
used for mixture adsorption. The value of n should be dependent on
temperature, pressure, and composition as n, approaches unity as x; = 1.
Constant n; values were used in this work. Although axial dispersion was
neglected in the model, the numerical solution inevitably included the
effects of dispersion. Such effects have been discussed elsewhere (13).
Another major possible cause for the deviation was the assumption that
the pressure was uniform in the bed. A pressure gradient in the bed
should result in a sharper wavefront during adsorption step and a more
diffuse front during desorption. Inasmuch as the pressure gradient in
fixed beds can be calculated, it should be included in a model for
commercial design purposes.

SYMBOLS
A BCD constants in heat capacity equations
abcd constants in adsorption isotherms
B Langmuir constant, atm™' or psi~'
C concentration in gas phase, mol/m?



13:22 25 January 2011

Downl oaded At:

746

000

R RN

NWR TN Y RS 2

3

N e =

CEN AND YANG

heat capacity of gas, cal/mol/K

heat capacity of adsorbed phase, cal/mol/K
heat capacity of adsorbent, cal/kg/K
effective pore diffusivity, cm?*/s

heat of adsorption, cal/mol

overall heat transfer coefficient, cal/m*/K/s
overall mass transfer coefficient, s™!
adsorbed volume, m* STP/kg adsorbent
Langmuir constant, m* STP/kg adsorbent
number of components
loading-ratio-correlation constant
pressure, atm

gas constant

radius of column, m

radius of particle, m

temperature, K

time, s

superficial flow rate, m/s

volume, m?

molar volume at STP

mole fraction in adsorbed phase

mole fraction in gas phase

height of column (= 0 at feed end), m

Greek Symbols

€

p
"

Superscript

*

Subscripts

fractional void in bed
bed density, kg/m® bed
modified LRC equation parameter

equilibrium

feed
component i
initial
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